Publications
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Link to Google Scholar
Publications in Nature | Science | their sister journals
Nature, 629, 348-354,2024 / Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 / Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014
Abstract
Properties of metal elements can be modified by alloying. Given that catalytic efficiencies are often maximized using metal single-atoms (SAs), two immiscible metals can improve the catalytic activity when they can be present as non-agglomerated dual SAs. Here, we report yet-unexplored synthesis of high-performance electrocatalysts utilizing immiscibility of Cu/Ru bimetal atoms. In the synthesized electrocatalyst (Cu/Ru@GN), both Cu-SAs and Ru-SAs are dispersed on N-doped graphitic-matrix (GN), while other Cu-SAs are bridged to Ru nanoparticles (NPs) surface via nitrogen. It shows superior mass-activity with outstanding catalytic performance and durability for hydrogen evolution reaction (HER), outperforming commercial Pt20wt%/C. Cu-SAs along with Ru-NPs enhance electric conduction or charge-transfer rate of GN-templates for fast kinetics. Owing to Cu-Ru immiscibility, the coordination of Cu-SAs by N atoms which bridge to Ru-NPs surface, introduces new active sites and brings about long-term stability (over 600 h in acidic media) by preventing aggregation of Ru-NPs.